Sklearn validation_curve 穷举gamma

from sklearn.learning_curve import validation_curve
from sklearn.datasets import load_digits
from sklearn.svm import SVC

import matplotlib.pyplot as plt
import numpy as np

digits = load_digits()
X = digits.data
y = digits.target

param_range = np.logspace(-6, -2.3, 5)

train_loss, test_loss = validation_curve(SVC(), X,y, param_name='gamma', param_range=param_range,cv=10, scoring='mean_squared_error')

train_loss_mean = -np.mean(train_loss, axis=1)
test_loss_mean = -np.mean(test_loss, axis=1)

plt.plot(param_range, train_loss_mean, 'o-', color="r",
         label="Training")
plt.plot(param_range, test_loss_mean, 'o-', color="g",
        label="Cross-validation")

plt.xlabel("gamma")
plt.ylabel("Loss")
plt.legend(loc="best")
plt.show()

https://morvanzhou.github.io/tutorials/machine-learning/sklearn/3-4-cross-validation3/

http://www.waitingfy.com/archives/4871

4871

Leave a Reply

Name and Email Address are required fields.
Your email will not be published or shared with third parties.