from sklearn import svm from sklearn import datasets clf = svm.SVC() iris = datasets.load_iris() X, y = iris.data, iris.target clf.fit(X,y) import pickle #pickle模块 #保存Model(注:save文件夹要预先建立,否则会报错) # with open('save/clf.pickle', 'wb') as f: # pickle.dump(clf, f) #读取Model # with open('save/clf.pickle', 'rb') as f: # clf2 = pickle.load(f) # #测试读取后的Model # print(clf2.predict(X[0:1])) from sklearn.externals import joblib #jbolib模块 # # #保存Model(注:save文件夹要预先建立,否则会报错) # joblib.dump(clf, 'save/clf.pkl') #读取Model clf3 = joblib.load('save/clf.pkl') #测试读取后的Model print(clf3.predict(X[0:1]))
https://morvanzhou.github.io/tutorials/machine-learning/sklearn/3-5-save/
4880