from __future__ import print_function import tensorflow as tf import numpy as np x_data = np.random.rand(100).astype(np.float32) y_data = x_data * 0.1 + 0.3 Weights = tf.Variable(tf.random_uniform([1], -1.0, 1.0)) biases = tf.Variable(tf.zeros([1])) y = Weights * x_data + biases loss = tf.reduce_mean(tf.square(y-y_data)) optimizer = tf.train.GradientDescentOptimizer(0.5) train = optimizer.minimize(loss) sess = tf.Session() init = tf.global_variables_initializer() sess.run(init) for step in range(201): sess.run(train) if step % 20 == 0: print(step, sess.run(Weights), sess.run(biases))
0 [-0.28746453] [0.6696652] 20 [-0.00834835] [0.35559732] 40 [0.07430416] [0.31318545] 60 [0.09390596] [0.30312708] 80 [0.09855473] [0.30074164] 100 [0.09965724] [0.3001759] 120 [0.0999187] [0.30004174] 140 [0.09998072] [0.3000099] 160 [0.09999542] [0.30000237] 180 [0.09999891] [0.30000058] 200 [0.09999973] [0.30000016]
https://morvanzhou.github.io/tutorials/machine-learning/tensorflow/2-2-example2/
4888