from __future__ import print_function import tensorflow as tf import numpy as np import matplotlib.pyplot as plt def add_layer(inputs, in_size, out_size, activation_function=None): with tf.name_scope('layer'): with tf.name_scope('weights'): Weights = tf.Variable(tf.random_normal([in_size, out_size])) with tf.name_scope('biases'): biases = tf.Variable(tf.zeros([1, out_size]) + 0.1) with tf.name_scope('Wx_plus_b'): Wx_plus_b = tf.matmul(inputs, Weights) + biases if activation_function is None: outputs = Wx_plus_b else: outputs = activation_function(Wx_plus_b) return outputs x_data = np.linspace(-1, 1, 300)[:, np.newaxis] noise = np.random.normal(0, 0.05, x_data.shape) y_data = np.square(x_data) - 0.5 + noise # plt.scatter(x_data, y_data) # plt.show() with tf.name_scope('inputs'): xs = tf.placeholder(tf.float32, [None, 1],name='x_in') ys = tf.placeholder(tf.float32, [None, 1],name='y_in') l1 = add_layer(xs, 1, 10, activation_function=tf.nn.relu) prediction = add_layer(l1, 10, 1, activation_function=None) with tf.name_scope('loss'): loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys-prediction), reduction_indices=[1])) with tf.name_scope('train'): train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss) sess = tf.Session() writer = tf.summary.FileWriter("logs/", sess.graph) init = tf.global_variables_initializer() sess.run(init) fig = plt.figure() ax = fig.add_subplot(1,1,1) ax.scatter(x_data, y_data) plt.ion() plt.show() for i in range(1000): sess.run(train_step, feed_dict={xs: x_data, ys: y_data}) if i % 50 == 0: try: ax.lines.remove(lines[0]) except Exception: pass prediction_value = sess.run(prediction, feed_dict={xs: x_data}) lines = ax.plot(x_data, prediction_value, 'r-', lw=5) plt.pause(1)
tensorboard –logdir logs
https://morvanzhou.github.io/tutorials/machine-learning/tensorflow/4-1-tensorboard1/
4925